2016 International Conference on Computational Science and Computational Intelligence

A Parallel Bi-perceptron Approach and its
Application to Data Classification

Daw-Ran Liou*

Department of Computer Science
and Information Engineering
National Taiwan University
Taipei 10617
*Correspondent;
dawran6@gmail.com

Abstract—Since the kernel function in support vector
machine is arbitrary, it carries no physical meaning in practical
applications. This work presents a bi-perceptron network that
works in real physical space. All network parameters can be
obtained in a constructive way without training. It is a divide-
and-conquer way with perfect performance. We show how to
operate this network to classify records.

Keywords—perceptron; classification; machine
neural network; text categorization

learning;

L.

Much effort has been expended in attempts to classify
various datasets. Neural networks have been developed with
varying degrees of success. Some of this effort has been
motivated by active research and development of training
algorithms for the network to improve its performance
gradually. There is no effective training algorithm that gives
perfect performance [1]. This work presents a design for the
network, named bi-perceptron network. This network can give
perfect performance on any datasets without training. We will
illustrate the design in this section and present its operation in
the next section.

The bi-perceptron network is a fixed feed-forward network
with three hidden layers, the output OR hidden layer; the
AND hidden layer; the perceptron hidden layer; and the input
layer, Fig.1. The single neuron in the output layer has a fixed
OR function. Each neuron in the AND layer has a fixed AND
function and receives two inputs from its two perceptrons. The
number of neurons in the AND layer is flexible and depends
on the difficulty of the dataset. This number is proportional to
the total number of data in the set and is inverse proportional
to the number of dimensions of the data roughly. The weights
of the two perceptrons can be obtained from the data set.

Let the set of all patterns be X = {x?,p =1, ... ,P }. Each
pattern xP is a D -dimensional column vector. The label
function, C:RP - N , maps each pattern, xP, to its class
identity number, cp . This network has 3 hidden layers,
{m=1,2,..,L}, L =3, Fig. 1(c). Let n,, be the total number
of neurons in the m™ layer.

INTRODUCTION

This work has been supported by Ministry of Science and Technology
(MOST), Republic of China, project no.: MOST104-2221-E002-110-MY?2.

978-1-5090-5510-4/16 $31.00 © 2016 IEEE
DOI 10.1109/CSC1.2016.217

Yang-En Chen

Department of Computer Science
and Information Engineering
National Taiwan University
Taipei 10617

1152

Cheng-Yuan Liou
Department of Computer Science
and Information Engineering

National Taiwan University
Taipei 10617

We will show that a general-position two class
classification problem can be solved perfectly with these three
hidden layers. This design is very different from all BP
algorithms that solve the perceptron complexity, Z’Z"O" ! I;"
in hidden layers [2]. Fig. 1(a) illustrates the network for a two-
class problem, ¢, € {'1','2'}, in a two dimensional space,
D =ny=2.

In this D space, a center line of a strip, xPx9 , is allocated
for two different patterns, xP and x9 , that are in the same
class '1’, x? €'1" and x9 € '1’. Note that in a D = 2 space. a
perceptron is represented as a line. We assume that class "1’
contains fewer number of patterns than that of class '2’. Then,
this center line is split into two parallel lines, line @ and line b.
They are in the two opposite sides of the center line and
parallel to the center line, @ Il XPx7 || b.

For @, pick a pattern X" , x" € '2’, where x" is the closest
pattern to XPx9 . X" and @ are on the same side of XPx7 . Plot
a parallel line @”, a” || XPx4 , that passes the pattern x”. Pick a
pattern x*, x5 € "1, that is in between the two lines, @ and
XPx4 , and is the closest pattern to the line @”. Plot a parallel
line, @®, a® || xPx9 , that passes the pattern x5. Plot a decision
border line, @a"*, right in between the two parallel lines, a” and
a®. a™ is the discriminate perceptron that has wide margin
between the different class pair (x”, x°). This @™ perceptron
is one of the borders of its strip. The two patterns, X" and x°,
serve as the margin-limiting stops of the region in between the
two lines, a” and a”.

The decision border line b*” for b can be accomplished in a
similar way on the other side of X?x? . These two decision
perceptrons, @ and b*¥, are two neurons in the first hidden
layer, m = 1, that enclose certain ‘1’ patterns in their strip. All
patterns enclosed in between the two perceptrons @™ and b*?
belong to the same class ‘1. These enclosed patterns will be
subtracted from the pattern set ‘1’ and will not be used for the
determination of all other strips in the rest iterations. We will
show a divide-and-conquer scheme to construct strip after
strip.

Note that the strip width between the two decision
perceptrons, @ and b*?, is useful in the determination of the

cps™

Conference Publishing Services

significance of its strip. Those strips with large width will be
preserved with high priority. Small width strips will be
omitted.

The patterns enclosed in between the two perceptrons, a™*
and b*¥, are well isolated from the patterns in the other class
'2'. Not that the stops x" and x° are different from the support
vectors in SVM. The space in between the two parallel lines,
@™ and b*, is a sector of the D space. An example of typical
strips is illustrated in the Fig. 1(b). The four strips for the class
1" compose of four bar-like strips. There exists physiological
evidences on receptive fields, D = 2, for the bar-like strips [3]
[4]. Note that the shape of a strip resembles that of the
elongated Gaussian distribution that is used in many statistical

methods. Also note that there are many other techniques to
pick the center patterns XP and x7 to build a strip.

As for the general-position two-class classification problem,
each neuron in the second hidden layer has the same ‘AND’
function that represents the patterns in each individual strip,
Fig. 1(c). The output of this neuron is “+1” for its strip
patterns. The output neuron in the third hidden layer has a
fixed global ‘OR’ function. The output of this global output
neuron is “+1” for all patterns in all strips. To our knowledge,
this is the simplest MLP architecture in many aspects.

In Figure 1(c), there are n; = 2n, neurons (perceptrons) in
the first hidden layer, and each strip is enclosed by two
parallel perceptrons.

()
Fig. 1. The Concept of Bi-Perception Network [9].

1153

(a)

(e)

II. METHOD

The following strategy is an example of ways to construct
those strips to discriminate one selected class from the rest
classes. It is expected that the strips enclose the cluster areas
of the selected class and the network can be used for
prediction. Therefore, both the number of patterns enclosed in
each strip and its width are used as references for the level of
significance. We will generate a lot of random center
hyperplanes and build the strips from them. Then, pick few
most significant strips as the neurons in the first layer. Note
that keeping few significant strips can reduce a lot of
overlapped similar strips

In each iteration, we randomly construct as many strips for a
selected class, 1000 strips in all following cases, and enlarge
them as possible in a similar way as in Fig. 1(a). The three
most significant strips are kept for the neurons in the first
hidden layer. In all our cases we keep three most significant
strips and omit the rest strips. In the next iteration, we
construct the significant strips for those patterns that are not
enclosed in the strips constructed in all former iterations.
These iterations will be continued until all patterns in the
selected class are exhausted and enclosed in the strips. The
last iteration may get one, two or three strips. In the last
iteration, when we do not have enough D patterns in the last
strip, we randomly assign a center hyperplane that passes

these patterns and enlarge the strip from this center hyperplane,

To generate a strip, we start from its center hyperplane. We
randomly pick D patterns in the selected class to form a
hyperplane. These D patterns should not co-hyperplane. Then,
we calculate the D — 1 vectors that represent the relative
position vectors of the D — 1 patterns to the reference pattern.
There is only one unit vector orthogonal to all of these vectors,
which can be calculated by solving a linear system. This unit
vector will be the normal vector of the center hyperplane.
When there are less than D patterns to pick from, we randomly
generate enough D — 1vectors so the normal vector of the
hyperplane can be decided. Since the normal vector of the
hyperplane and the point it passes through are decided, the
equation of the hyperplane can be decided. When the center
hyperplane is decided, move the hyperplane to both its
opposite sides to get two parallel decision hyper-planes, which
form a “hyper-band or strip”, in a similar way as that in Fig.
1(a).

The accomplished strips are used as the neurons in the first
hidden layer of the bi-perceptron network. The coefficients of
each hyper-plane are exactly the weights of its neuron in the
first hidden layer. All patterns in each strip will have the same
outputs, “+1”, from its “AND” neuron representing this strip
in the second hidden layer. The functions of all neurons in the
second layer and third layer are fixed logic gates. There is no
need to train their weights. That is, the bi-perceptron network
can still function after replacing these two layers with logic
gates.

III. RESULTS AND DISCUSSION

We took six datasets to test the performance of this network.
Cross Dataset and Circle Dataset were manually generated in
a 2D space. Sonar, Wine, Ionosphere, and Promoters are real
datasets from UCI Machine Learning Repository [S]. Their
pattern dimensions, D, are 60, 13, 34, and 57 respectively. The
first and the second attributes of lonosphere dataset were
ignored. This is because they contain less information but
causing collinearity. So, the number of dimensions of the
patterns in Ionosphere dataset was reduced to 32. The
Promoters dataset is composed of DNA sequences, and each
of them contains 57 nucleobases. We transformed each
sequence into 57 integer attributes by encoding “A”, “T”, “C”,
and “G” as 1, 2, 3, and 4 respectively. We construct 50
networks for each dataset. We randomly picked 1/10 data out
from each dataset as the testing set and then constructed the
network with the rest 9/10 data. For each dataset, 50 different
networks were constructed from different 9/10 datasets. Then,
each network is tested by its 1/10 datasets. Table I shows the
number of patterns in each class. Table II shows the average
accuracies of the 50 networks that predict their test datasets
for different classes. Table III compares the accuracies of
various methods. The results show that the network works
well in different datasets.

TABLE 1. NUMBER OF PATTERNS IN SIX TESTING DATASETS.
(#) Class 1 Class 2 Class 3
Cross Dataset 138 165 -
Circle Dataset 140 97 -
Sonar 97 111 -
Wine 59 71 48
Tonosphere 225 126
Promoters 53 53
TABLE II. AVERAGE ACCURACICES OF BI-PERCEPTION FOR DIFFERENT
CLASSES.
Class 1 Class 2 Class 3
Cross Dataset 94.6% 73.9% -
Circle Dataset 96.9% 69.4% -
Sonar 53.4% 51.8% -
Wine 87.3% 92.2% 94.2%
Ionosphere 79.4% 71.4% -
Promoters 53.3% 50.9% -
TABLE I ACCURACIES OF DIFFERENT METHODS
Bi-perceptron Gaussian SVM Cubic SVM
Cross Dataset 94.6% 95.0% 77.9%
Circle Dataset 96.9% 97.0% 97.9%
Sonar 53.4% 59.6% 88.9%
Wine 94.2% 42.7% 98.3%
Ionosphere 79.4% 93.7%* 90.3%
Promoters 53.3% 89.6%° 88.7%

 Kernel scale = 5.7

b Kernel scale = 7.5

The bi-perceptron network predicts as good as SVM do. It
does not predict well for Sonar dataset. The Sonar dataset is
not linearly separable, and the clusters of its two classes are
quite close to each other.

1154

We also simulated the examples in [6] and compared the
results. Five machine learning techniques, k-NN (k-nearest
neighbors algorithm), SOM perceptron [6], MLP, SVM and
Bi-perceptron, are compared using the 5-fold cross-validation.
Table IV and Table V listed all their parameters. The dataset is
randomly split into five partitions, four of them are used in the
training process and the rest one is used in the testing process.
The results are the average of the 5-fold cross-validation. The
kept ratios in each iteration of building the bi-perceptrons are
listed in Table IV. Parameter k indicates the number of
neighboring cells in the k-NN algorithm. The parameters of
SVM are the cost C for the error tolerance and the gamma vy in
the Gaussian kernel. The values of C, v, and k, are optimized
using an inner 5-fold cross-validation procedure. The settings
that produce the lowest errors are used to learn the models
with the whole set of training data. The MLP has two hidden
layers. Table VI and Table VII recorded the training
accuracies and the testing accuracies. The bi-perceptron
network can always get perfect performance 100% in training
accuracy, and its testing accuracies are also comparable.

TABLE IV. PARAMETERS IN K-NN, SOM PERCEPTRON, AND BI-
PERCEPTRON [6]
k-NN SOMP Bi-perceptron
(n,,, ng,ns) kept ratio
Sonar (3,1,1,3,3) (35,5,1) 3 of 1000
(G,1,LL1)
Wine (3,15,13,11,19) (10,5,3) 3 of 1000
(15,19,13,15,11)
lonosphere (1,3,1,1,1) (10,5,1) 3 of 1000
(1,11,1,1,1)
Promoters (3,5,1,3,1) (100,40,1) 3 0of 1000
(3,3,3.3,3)
TABLE V. PARAMETERS IN SVM AND MLP [6]
SVM MLP
C nMLP nltP
Sonar 2°,21,2°,2%,2) 2727272729 30 10
(,2,2,2%,2% (2%27°272°27)
Wine @",2'271 282 @22 272) 20 5
@21,2!2702h) 27212127127
Tonosphere (2°,2°,23 23 2" Q'27"'27" 2727 20 5
(25’2 1’ 21’2 l, 21) (2 3’2 5’2 1’2 3’2 I)
Promoters (2',2', 2", 2% 2h Q227287 20 5
(25’ 21’ 23, 21’ 25) (2*15,2*9,2*11,2*9’2*11)
TABLE VL TRAINING ACCURACICES ON REAL DATASETS [6]
Training Accuracy
k-NN SOMP MLP SVYM Bi-perceptron
Sonar 95.46% 100.00% 98.24% 100.00% 100.0%
Wine 97.88% 100.00% 100.00% 99.56% 100.0%
Tonosphere 97.69% 100.00% 99.46% 99.05% 100.0%
Promoters 93.72% 100.00% 100.00% 100.00% 100.0%
TABLE VII. TESTING ACCURACICES FOR REAL DATASETS [6]
Testing Accuracy
k-NN SompP MLP SVYM Bi-perceptron
Sonar 82.74% 86.60% 84.14% 88.00% 53.4%
Wine 97.78% 98.33% 97.78% 98.30% 87.3%
Tonosphere 85.17% 90.60% 88.32% 94.87% 79.4%
Promoters 72.64% 86.55% 85.73% 89.36% 53.3%

Fig. 2 and Fig. 3 plotted the results of two networks
constructed for the Cross dataset and the Circle dataset. Fig.
2(b) and Fig. 3(b) recorded all strips in the networks. We
constructed these networks through several iterations, and the
three significant strips generated in each iteration are kept and
all rest insignificant strips are omitted. The locations and
directions of the three most significant strips in an iteration are
very similar. This is reasonable. This suggests that there is no
need to keep more than three strips in each iteration.

From these six simulations, we observed that it is difficult
to predict the class data when the class patterns scattered over
isolated regions. A region is isolated when it is somehow
surrounded by patterns in other classes. This difficulty
happens because we use strips, instead of polyhedrons, as
building blocks to solve isolated regions. Using polyhedrons
will increase the flexibility of the network, but it also
increases the complexity drastically [2]. The network needs a
large number of discriminate patterns to construct reliable

\
(b)

Fig. 2. The bi-perceptron trained for the Cross dataset.

1155

strip complex when the patterns are randomly scattered over
isolated regions.

IV. SUMMARY

This work presents a divide-and-conquer construction for
the perceptrons in the network without any training process.
Both the number of neurons and the number of layers are
much less than those obtained by the tiling algorithm [7]. This
network gives perfect performance for any training datasets.
The strips discriminates different classes in physical attributes
directly. This will make comprehension easier on
classification results than that obtained from SVM. To our
knowledge, the performance of this network is comparable to

(b)

Fig. 3. The bi-perceptron trained for the Circle dataset.

that of SVM [8]. It is easy to extend the design for
discriminating multiple-class problems, class after class.

Instead of strips, one may construct isolated polyhedral
regions to improve the accuracies recorded in Table I, II, III,
and VII. This is because the strips may not suitable for certain
data distributions and not good for their predictions. Note that
the shape of a strip resembles that of an elongated Gaussian
distribution. The method for the construction of strips can be
directly extended to the construction of isolated polyhedral
regions. Each region, that contains the same class patterns, is
enclosed by (D + 1), or more, hyperplanes (perceptrons).
Several isolated polyhedral shapes are illustrated in Fig. 4.

As for training, one can fix the functions of all neurons in
the second hidden layer and the third hidden layer, with ‘AND’
and "OR’ functions respectively. Then apply the BP algorithm
[1] to train all weights of the n; = 2n, perceptrons in the
first hidden layer only. During training, the sigmoid function
is used in all network neurons. Each weight of the ‘OR’
neuron is fixed and set to 0.2. Each weight of the ‘AND’
neuron is also fixed and set to +1 during the training process.
Note that the method in [9] provides a training algorithm for
the whole network weights.

When we extend the strip region to the polyhedral region,
we may set D + 1, or more, neurons to enclose an isolated
polyhedral region and connect these D + 1 neurons to their
“AND” neuron in the second hidden layer. Then, we apply the
BP algorithm [1] to train all n; = n,(D + 1) neurons in the
first hidden layer only. During training, the sigmoid function
is used in all network neurons. Each weight of the ‘OR’
neuron is fixed and set to 0.2. Each weight of the ‘AND’
neuron is also fixed and set to +1 during the training process.
After training, all patterns in a single polyhedral region must

D+3

Fig. 4. Polyhedral Shapes Enclosed by Hyperplanes (Perceptrons).

1156

belong to the same class [8]. To our knowledge, this training
can improve the testing accuracies drastically and outperform

all others.
REFERENCES

[1] Sejnowski, T. J. and Rosenberg, C. R. 1986. NETtalk: a parallel network
that learns to read aloud. Johns Hopkins University Department of
Electrical Engineering and Computer Science Technical Report 86/01.

[2] Mirchandini, G. and Cao, W. 1989. On hidden nodes in neural nets.
IEEE Transaction Circuits and Systems 36:661-664.

[3] Daugman, J. G. 1980. Two-dimensional spectral analysis of cortical
receptive field profiles. Vision Research 20:847-856.

[4] Dobbins, A., Zucker, S. W., and Cynader, M. S. 1987. Endstopped

neurons in the visual cortex as a substrate for calculating curvature.
Nature 329:438-441.

[3]

(6]

(7
(8]

1157

Lichman, M. 2013. UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science.

Liou, C.-Y. and Cheng,W.-C. 2011. Forced Accretion and Assimilation
Based on Self-organizing Neural Network. In: Self Organizing Maps -
Applications and Novel Algorithm Design, Chapter 35 in book edited by:
Josphat Igadwa Mwasiagi, page 683~702, ISBN: 978-953-307-546-4,
Publisher: InTech, Publishing date: January 2011.

Mezard, M. and Nadal, J. P. 1989. Learning in feedforward layered
networks: the tiling algorithm. Journal of Physics A22:2191-2203.

Boser, B. E., Guyon, I. M., and Vapnik, V. N. 1992. A training
algorithm for optimal margin classifiers. In Proceedings of the Fifth
Annual Workshop on Computational Learning Theory, 144-152.
Pittsburgh, PA, USA: ACM.

Liou, C.-Y. and Yu, W.-J. 1994. Initializing the weights in multilayer
network with quadratic sigmoid function. In Proceedings of the
International Conference on Neural Information Processing, 1387-1392.
Seoul, Korea: APNNA.

